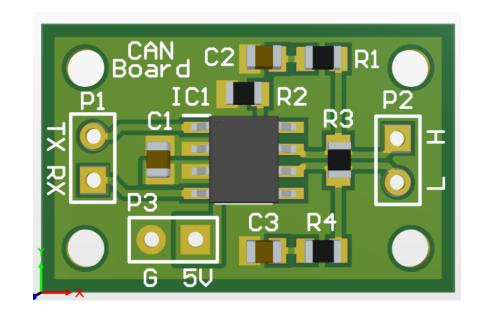


Welcome to Part 2 of the Altium Designer Workshop!


Workshop Overview

√Part 1: Schematic Design

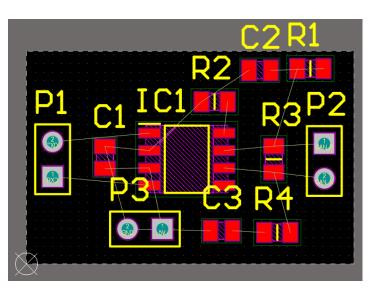
- ✓ Basics of Altium Designer
- ✓ Adding components
- ✓ Connecting components
- ✓ Bonus Material: Hierarchical Schematics

Part 2: PCB Design

- Moving from schematic to PCB layout
- Layout tips and best practices
- Routing techniques
- Silkscreen tips
- Bonus Material: Multilayer PCBs
- Final Deliverable: 2-layer CAN transceiver PCB design

Getting Started!

<u>Tasks:</u>

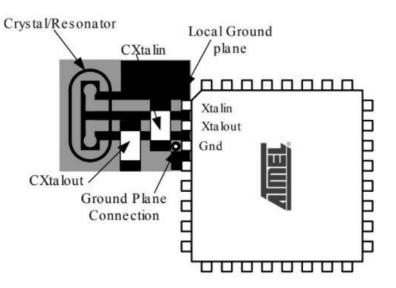

- https://tinyurl.com/AltiumFall2022
- Make a new PCB file (and save it!)
- Set origin to bottom left corner
- Edit board shape/size (940 mil x 610 mil)
 - Remember to be in Board Planning Mode (1 on your keyboard)

Beginning Your Layout

<u>Tasks:</u>

- Import changes from schematic to PCB
- Do an initial layout (rough draft!)

Shortcuts:


- 1 = Board Planning Mode
- 2 = 2D Mode
- 3 = 3D Mode
- Ctrl + Scroll = Zoom
- Right Click + Drag = Move schematic/PCB
- Click and Hold + Space = Rotate component
- Backspace = Undo Net/Trace Segment
- Esc = Exit active tool
- Right click + drag from right to left = select entire object from part of it
- Right click + drag from left to right = select object that is completely covered
- Clicking mouse wheel + moving up/down = Zoom In/Out
- Scrolling up/down = move view up/down
- Shift + scroll up or down = move left/right

A Bit of Theory - Clocks

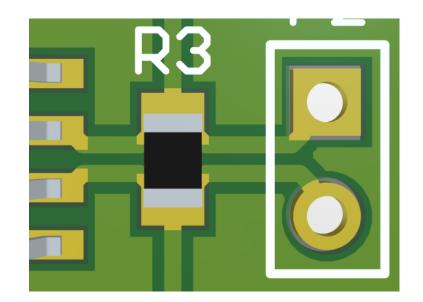
Important Components on the Board

- Crystal oscillator ("clock")
 - Keep the clock happy!
 - Route XTAL traces close to the same length
 - Provide GND shielding around clock and its supporting components
 - Have clock and its supporting components close to the IC

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-8128-Best-Practices-for-the-PCB-Layout-of-Oscillators_ApplicationNote_AVR186.pdf

A Bit of Theory – Analog Components

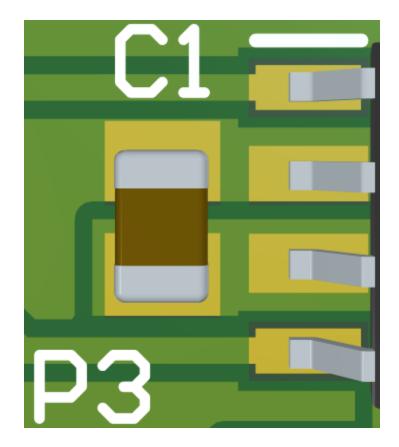
Important Components on the Board


- Anything analog
 - Analog things are sensitive to noise, so keep them away from digital signals and things that do a lot of switching
 - Really just keep sensitive components away from noisy lines (protect the clock, protect analog circuits, etc.)

A Bit of Theory

Important Components on the Board

- Components connected to differential pairs or timing-sensitive signals
 - Make sure traces are close to the same length
 - Plan ahead by placing the associated components near each other

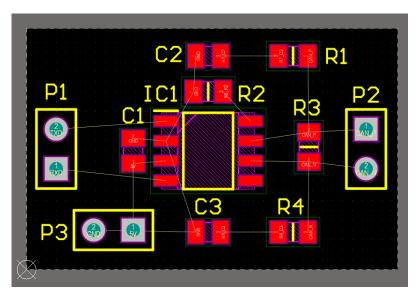


A Bit of Theory

Important Components on the Board

- Bypass/Decoupling Capacitors
 - Put them as close to the IC as possible to minimize parasitic inductance

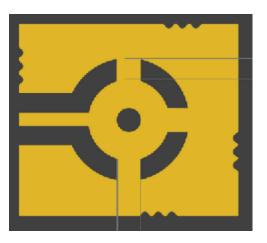
Tips and Tricks

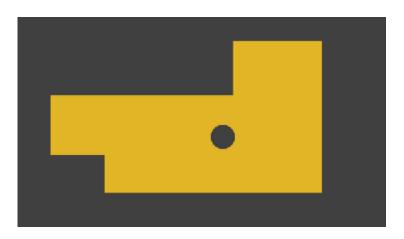

- Alignment Tool
 - Align vertical/horizontal centers
 - Align top/bottom/left/right
- Selection Filter
 - Don't forget to turn it off when you're done!

Fine-Tuning Your Layout

Tasks:

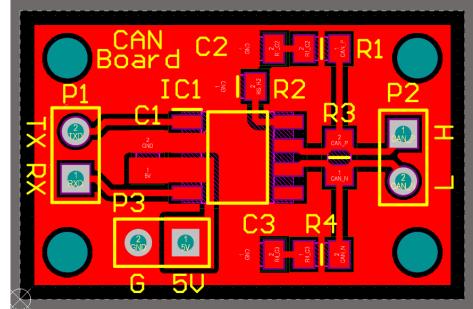
 Fine-tune your layout with the tips and theory discussed in the previous slides


Shortcuts:

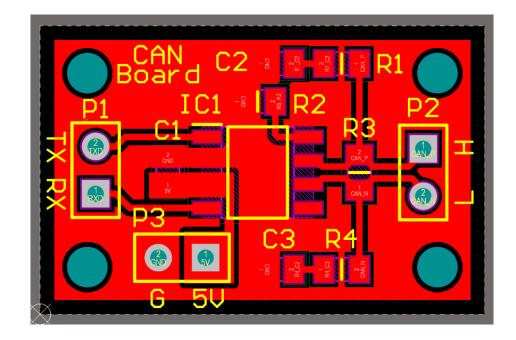

- 1 = Board Planning Mode
- 2 = 2D Mode
- 3 = 3D Mode •
- Ctrl + Scroll = Zoom ٠
- Right Click + Drag = Move schematic/PCB ٠
- Click and Hold + Space = Rotate component ٠
- Backspace = Undo Net/Trace Segment ٠
- Esc = Exit active tool ٠
- **Right click + drag from right to left = select** • entire object from part of it
- **Right click + drag from left to right = select** ٠ object that is completely covered
- Clicking mouse wheel + moving up/down = • Zoom In/Out
- Scrolling up/down = move view up/down ٠
- Shift + scroll up or down = move left/right ٠

Updating Rules

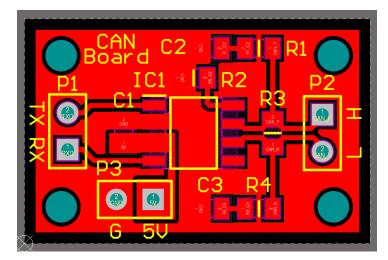
- Adjusting Design Rules
 - Default trace width (5 mil min, 15 mil preferred, 20 mil max)
 - Differential trace width (15 mil)
 - Change polygon connect style to direct connect
 - Set board outline clearance so polygons stay 30 mil from edge

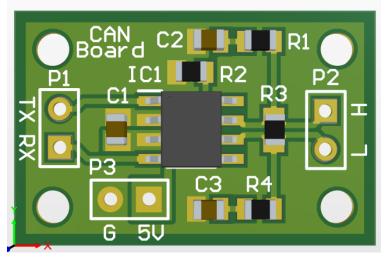


Route the Board!


- Route differential traces (15 mil trace width)
- Route single traces (15 mil trace width)
- Add polygons for power
 - 5V polygon covering 5V pad of IC, 5V pad of bypass capacitor, and 5V pad of power header
 - GND polygon across top of board

Add (Useful) Silkscreen


- Add Tx/Rx labels to single-ended signal header
- Add L/H labels to differential pair header
- Add 5V/G labels to power header
- Add board title
- Clean everything up!
 - Make sure the silkscreen is aligned and facing logical directions



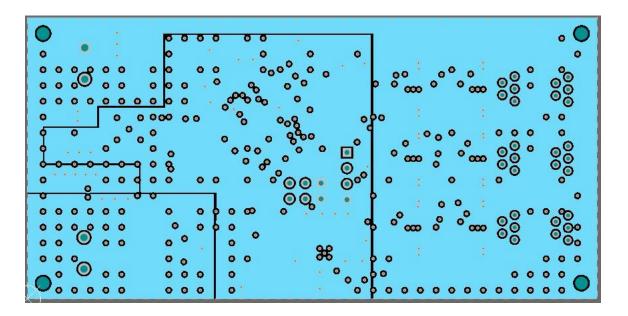
Adding Test Points and Mounting Holes

- Add a test point to the GND net
- Add 4 M2 mounting holes
 - Each mounting hole should be 100 mil from the edges of the corner
 - M2 mounting holes have a hole size of 86.6 mil

Preparing the Layer Stack

OPTIONAL Tasks:

- Set up the layer stack manager so that you have four layers
 - (Top, GND, Power, Bottom)


#	Name	Material		Туре	Weight	Thickness	Dk	Df
	Top Overlay			Overlay				
	Top Solder	Solder Resist		Solder Mask		0.4mil	3.5	
1	Top Layer			Signal	1oz	1.4mil		
	Dielectric 2	PP-006		Prepreg		2.8mil	4.1	0.02
2	GND	CF-004		Signal	1oz	1.378mil		
	Dielectric 1	FR-4	0	Dielectric		12.6mil	4.8	
3	Power	CF-004	0	Signal	1oz	1.378mil		
	Dielectric 3	PP-006		Prepreg		2.8mil	4.1	0.02
4	Bottom Layer		0	Signal	1oz	1.4mil		
	Bottom Solder	Solder Resist		Solder Mask		0.4mil	3.5	
	Bottom Overlay			Overlay				

Preparing the Layers

OPTIONAL Tasks:

- Pour a GND polygon across the power layer
- Pour a 5V polygon on the power layer

Use Vias!

OPTIONAL Tasks:

- Try to make a power polygon around one of the 5V pads and place vias in it to connect to the power layer
- Try to use a via to make a trace switch layers before connecting to another pad
- Try to make a ground pour across the top layer and a ground pour across the bottom layer. Add via stitching to the GND net.

Congratulations!

You Now Know How To:

- Make a new PCB file
- Lay out components
- Route components using single-ended and differential traces
- Use polygons and vias
- Adjust the layer stack for multilayer boards

If you ever have questions about Altium, feel free to reach out at emarshall33@gatech.edu!

